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Abstract

Maintaining the long-term performance of software onboard a spacecraft can be a major factor in the cost
of operations. In particular, the task of controlling and maintaining a future mission of distributed
spacecraft will undoubtedly pose a great challenge, since the complexity of multiple spacecraft flying in
formation grows rapidly as the number of spacecraft in the formation increases.   Eventually, new
approaches will be required in developing viable control systems that can handle the complexity of the data
and that are flexible, reliable and efficient.  In this paper we propose a methodology that aims to maintain
the accuracy of flight software, while reducing the computational complexity of software tuning tasks.  The
proposed Monitoring and Self-Tuning (MAST) concept consists of two parts: a flight software monitoring
process and a tuning process. The dependency on the software being monitored is mostly contained in the
monitoring process, while the tuning process is a generic algorithm independent of the detailed knowledge
on the software.  This design concept will enable MAST to be applicable to different onboard software
controlling the dynamics of the spacecraft, such as attitude, orbit, and formation control.  An advantage of
MAST over conventional techniques such as filter or batch least square is that MAST's tuning algorithm
uses machine learning approach to handle uncertainty in the problem domain, resulting in the reduction of
over all computational complexity.  The underlying concept of this technique is a reinforcement learning
scheme based on cumulative probability generated by the past performance of the system.  The success of
MAST will depend heavily on the reinforcement scheme used in the tuning algorithm. A reinforcement
scheme that works must guarantee the existence and convergence of a solution of the tuning process.

1.  Introduction
Some of the problems encountered during the development of a control system are the uncertainty
in the application domain and the balancing between efficiency and complexity of the system.  In
a large and complex problem such as distributed spacecraft, the accuracy of the control software
depends on how much information about the problem is modeled into the system.  The more
information taken into account, the more complex the system becomes, leading to higher
computational cost.  Moreover, the task of maintaining long-term performance of a control
system can be a major factor in the operation cost of future multiple spacecraft.  The maintenance
and control of constellations or multiple spacecraft in formation poses a great challenge, since the
complexity of a formation grows non-linearly as the number of spacecraft in the formation.  New
approaches are required that will result in viable control systems that can handle the complexity
of the data and that are flexible, reliable and efficient.

In this paper we propose the Monitoring and Self-Tuning (MAST) methodology that aims
to maintain the efficiency of onboard software by dealing with uncertainty in an
appropriate way. MAST is an extension of a project at NASA/Goddard Space Flight
Center (GSFC): Autonomous Model-based Trend Analysis System (AMTAS) [1].  The
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objective of AMTAS is to monitor the health and safety of spacecraft hardware and
subsystems.  MAST extends this objective further to dynamic applications by proposing
to apply techniques developed in AMTAS to onboard flight software, which control the
dynamics of spacecraft.

In general, the performance of flight software can be meaningfully defined as a measure
of the closeness between the observed and the predicted state of the systems. These
quantities are usually referred to as residuals. Understanding the uncertainty underlying
the residuals, identifying its controlling factors, and quantifying the propagation of these
factors through the model for the system can lead to an improvement in the performance
of the software. This is the first part of the proposed MAST program. MAST consists of
two main parts: a predictor and a tuner.  The predictor is a real-time dynamic system that
monitors relevant residual output of the software it is maintaining.  The step size of the sampling
time varies depending on the parameters being monitored.  The state of the predictor is the
quantity that represents the performance of the software in real time.  When the state of the
predictor approaches a given threshold, the tuning process will be initiated.

The tuning process is a closed-loop learning algorithm based on a reinforcement learning scheme.
The goal of the tuning process is to restore the performance of the software by adjusting relevant
model parameters in a certain way until a cost function is minimized. During each cycle the
values of the model parameters are increased or decreased, depending on the outcome of the
previous few cycles.  The software performance is recalculated using the adjusted parameter, and
the next cycle begins. The rate of convergence of the tuning process depends on the
reinforcement scheme used to score how successful the adjusted parameters are towards the
tuning goal.  If the reinforcement scheme is completely impartial, then the learning algorithm is
simply a random search.  On the other extreme, a reinforcement scheme that always scores
perfectly is equivalent to the conventional gradient (steepest descent) method.  Even though the
learning approach does not give an optimal solution, but it has a much wider operational range
than the conventional optimal batch least square or filter techniques.  This is simply because; the
learning system can be designed to automatically accumulate and reuse its past activities, which
will enable the system to react and adapt to changes in the environment.  This approach is
therefore appropriate for problems with large degree of uncertainties. Moreover, this technique is
not critically dependent on the detailed knowledge of the software being tuned. As a result, some
of the technical restrictions generally required in conventional techniques such as linearity, or
conditions on process and measurement noises are not required if a learning algorithm is used.  It
should be noted that the tuner is an off-line algorithm, or a process running in parallel and
isolated from the routine operation of the software.  Not until the tuning goal has been reached,
that the software will be updated with the new values for the model parameters.  Hence, the tuner
may be performed on the ground or on an onboard computer.

In this paper we propose two applications of MAST: the application of MAST to attitude
monitoring and self-calibration (ASCAL), previously proposed in [2] and an application of
MAST to the maintenance of spacecraft formation.  In the first application, the accuracy of
attitude software depends on, among other things, the accuracy of sensor models.  These models
are generally a function with parameters representing relevant uncertainties such as bias, scale
factor or misalignment.  In the beginning, these parameters are set at certain pre-calibrated values
and are manually tuned and updated periodically throughout the life of the spacecraft.  Some
tuning processes are routine activities, while others are elaborated and performed on ground by
attitude specialists.  In this proposed application, MAST will automatically monitor and tune a set
of sensor parameters.  For further readings on standard attitude calibration procedures, see for
instance [3-6].
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In the second example, we propose an application of MAST to the maintenance of large
formation of spacecraft.  The task of controlling a number of spacecraft to fly in formation is
more complicated than controlling a single spacecraft.   One problem that may be encountered in
the development of formation control algorithms for large formation is the complexity that arises
from the high degree of freedom of the system.  In practice, the conventional approach based on
state-space representation is manageable only for formation of a small number (2-3) of spacecraft.
The complexity becomes very high in a large formation, which makes the control algorithm
computationally intensive. Moreover, uncertainties in the system models or from environmental
disturbances can be propagated and magnified.  To correct these errors the control system has to
be tuned often and regularly to keep the formation intact by continuously monitoring and
adjusting the position of each individual spacecraft.  Ideally, these tasks should be performed
onboard, and hence efficient and fast algorithms for the real-time solution of such a large-scale
optimization problem are needed.

The organization of this paper is as follows.  Section 2 describes the architecture of MAST
including the interface between onboard software, the predictor, and the tuner. Section 3
describes the formulation of the monitoring mode including the predictor and its interface with
input software being monitored. Section 4 describes the tuning mode.  Section 5 describes the
formulation of the learning system and its reinforcement scheme.  Section 6 discusses the two
examples: ASCAL and a formation maintenance methodology using MAST.

2. MAST Architecture
There are two different operation modes in MAST: The monitoring mode and the tuning mode.
The monitoring mode is demonstrated in Figure 1. This mode consists of the software being
monitored and the predictor, both running in real time.  The detail description of the predictor
depends on the software being monitored.  It is necessary that the predictor have sufficient
knowledge of the software in order to make an accurate prediction and diagnosis of the problems.
A model for the predictor is described in the next section.

The proposed architecture for the tuning mode is demonstrated in Figure 2.  This mode consists of
three components connected in a closed-loop: an off-line copy of the software being monitored,
the evaluator, and the tuner. The evaluator measures the convergence of the tuning solutions and
the tuner makes appropriate adjustment to certain model parameters of the software guided by a
reinforcement learning scheme, generated by an uncertainty handling technique. Several
techniques have been used by various research projects in reinforcement learning. In MAST, the
scheme is based on the Local Dempster-Shafer theory (LDS) which is a modification of the
Dempster-Shafer theory of belief and evidence [7,8].  LDS was originally developed for AMTAS
diagnosis process [1,9].  It is specifically developed to deal with systems with large number of
variables.  As opposed to the predictor, the evaluator and the tuner are generic processes that do
not require detailed knowledge of the software being tuned.  Their basic requirements are a set of
software parameters to be tuned and an appropriate cost function that models the inaccuracies of
the software.  The evaluator evaluates and scores the result of each cycle by examining the effect
of the parameter adjustment on the cost function.  Based on this score, the tuner continues to adjust
the parameters until the process converges.
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3. Monitoring mode
Monitoring mode is performed during normal operation. Let x denotes the state vector estimated
by the software and s denotes the vector of sensor parameters being monitored and calibrated.
Assume that an expected state vector ax  is given. ax  may be obtained in various ways depending

on the software and on sensors and parameters being monitored.  Let the software be driven by the
dynamic system
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where krz ,  is the measurement for sensor r at time kt , and rs is the parameter vector associated

with the model of measurement r.  The process noise u and measurement noise w is assumed to be
uncorrelated white Gaussian noise with zero mean.  During the normal mode of operation rs  are
kept constant.

The performance of (1) is observable from the deviation of certain quantities, such as state
residuals axx − , and sensor residuals, ))(,(, karkr txsGz − .  Let ξ  represents the vector of the

desired residual observations.  The monitoring process is then defined via a tracking process, i.e.

the linear dynamic of ξ  and its slope ξ& :
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where ν  is a zero mean white Gaussian acceleration noise. The time step KK ttt −=∆ +1 for

residual samplings may be larger than the time step of the input system (1). Let ]   [ˆ ′= ξξ &x .  Then
the state-space representation of the predictor can be written as

Figure 1.  Monitoring Mode
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Note that, the measurement Kẑ  represents the residual sampling while the state )(ˆ Ktx  measures

the level of performance of (1) during the time Kt .  A propagation of )(ˆ Ktx  predicts if and when
the performance of (1) approaches an acceptable threshold at a certain time in the future.  The
system (1) and the predictor (2) connect as shown in Figure 1.  Higher order derivatives of state
residuals can also be included in )(ˆ Ktx  in a similar way.  In which case, we would have a higher
order predictor.  Higher order derivative may be crucial for software systems that are sensitive to
uncertainties in measurement models, which is generally the case for a highly non-linear, chaotic
or unstable systems.

4. Tuning Mode
The tuning process is a closed-loop algorithm composed of the software to be tuned, e.g. the
dynamic estimator (1), an evaluator that evaluates the outcome of the tuner during each cycle, and
a tuner, which is a learning system that adjusts model parameters based on the evaluation.  The
evaluator takes as input the estimated states of (1) and a nominal state given by a model.   The
evaluation is based on the effect of the tuner on a cost function, typically written as

where M is a symmetric positive definite quadratic form that provides the weight and relations
among the residuals. This weight reflects the importance and sensitivity of each state variable in
the tuning process.

Remark:  For the tuning process to be fully independent of the software being tuned the tuner
must be properly initialized when it is activated. That is, the parameters to be adjusted, the step
size, and the parameter ranges must be identified.  For instance, the parameter ranges are chosen
in such a way that the region is void of any singularity and at least one solution exists.  This
knowledge can be given a priori by human experts in terms of rules or a belief measure on the set
of parameters, their ranges, and step sizes. Furthermore, with sufficient learning capability, these
measure functions can be updated each time the system completes a tuning task, whether it is
successful or not.  This learning activity is highly dependent of application domain and will not
be discussed in this paper.

5.  Reinforcement Learning System

Reinforcement learning is the type of learning that is popular among most current researches in
machine learning and statistical pattern recognition. Other popular type of learning systems such
as artificial neural network, requires a priori training from examples provided by an experienced
supervisor. Such systems are not quite appropriate for problems involving learning from
interaction. In interactive problems it is often impractical to obtain examples of desired behavior
ahead of time, which are both correct and representative of all the situations to which the system
has to react. In an unknown situation, where learning is most beneficial, the system must be able
to learn proactively from its own experience.

xMxxJ T ˆˆ)ˆ( ⋅⋅=
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During the tuning process, the parameter adjustment is based on the rate of convergence (or
divergence) of the residuals during the previous two (or more) cycles. Assume there are n sensor
parameters to be adjusted, i.e. the dimension of the parameter vector Kp  is n. The parameters can

be increased or decreased by Kp∆ . The set H of all possible adjustments has ∑
=
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elements.  Each element is a set of parameters with a plus (+) or minus (–) sign to denote if the
parameter is being increased or decreased. For instance, an increase in parameter a and a decrease
in parameter b is represented by the “signed” set },{ −+ ba .  During each loop K, the step size

Kp∆ is computed, and the set H is constructed. An indexed by a cumulative probability

distribution Kp  which generated by the Local Dempster-Shafer (LDS) theory.  The learning

process in the tuner is precisely the mechanism that adapts Kp  to obtain the new index 1+Kp  for
the next cycle.

Due to space limitation, we will describe a simpler algorithm based on the Dempster-Shafer (DS)
theory, which we modified to suit our tuning problem.  For a more in-depth discussion of the
LDS theory see [2].  DS theory is defined on a set of n elements. Recall that, H is a set of all
possible ways of modifying model parameters being tuned. A mass function on H is a probability
function that assigns a degree of belief to each of its element.  The mass function satisfies the
following conditions

∑
⊇HA

Am )(  =  1, for A ≠ ∅    and m( )∅ =  0

Two mass functions m m1 2 and  on H can be combined into a single mass function m m1 2⊗ by
the Dempster composition rule:
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These mass functions are used to generate the degree of belief associated to each element of H.  A
belief function generated by a mass function m is defined as:
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where the union between two signed sets is obtained by "adding" all elements in the two sets
according to their sign.  This way, every subset of the form },{ −+ aa will all be cancelled out. In
statistical terms, the belief function is a cumulative probability on H.

During a tuning cycle K, the belief function Kp  is evaluated and used as an index set for H.  If
the resulting residuals are found to decrease with a faster rate or increase with a lower rate, the
tuner will re-compute the next belief vector 1+Kp  by applying a positive learning algorithm
described in [1,9]. The new index will strengthen the performance of the cycle K.  Conversely, if
the residuals performed in the negative manner, then the negative learning algorithm will be
applied, resulting in lessening the degree of belief on the failed action.

The learning process discussed above is the simplest application of the (modified) DS theory to
the tuner. In practice this algorithm can be enhanced in various ways to increase the performance
and robustness of the tuner.  First, the localization of the DS theory on H defined in [1,9] will
reduce the size of search space.  Second, the size of parameter increment may be decreased as the
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residuals begin to converge. Third, the use of hierarchical or multilevel learning systems
accelerates the learning process (more so for the initial rate of learning) and simplifies the
structure of the tuner in each layer.

Remark:  In some situation, the dynamics driven the software may have a hierarchy structure. A
typical example: in a formation with complex topology, it may be more convenient to partition
the system into layers of homogeneous sub-formation.  In which case, the control algorithm will
have to be partitioned accordingly.  Hence, the set H will also be required to have a hierarchical
structure to support the hierarchy of the control software.  A hierarchical version of DS theory
can be defined in a natural way, and the parameter tuning is performed in a sequence of steps.
First, the highest level in the set H is selected, following by a lower level. This procedure
continues until the last level is reached. This hierarchical structure will reduce the size of the
search space in each layer, and hence enhance the performance of the tuning system. The third
component in the tuning mode is the evaluator.  Its important task is to diagnose the problems that
predictor predicted.  This corresponds to determining, based on the residual data alone, which
parameters in the software need adjustment, and what are the “safe” ranges that these parameters
may vary.  Such information must be determined prior to the tuning process.  Usually, expert
knowledge can be encoded in some form, such as rules.

6.  Example 1:  ASCAL
During an attitude sensor calibration, where both states and model parameters are simultaneously
solved for, it is natural to consider extended state vectors consisting of both attitude and sensor
parameters. However, including sensor parameters as part of the state will introduce additional
non-linearity into the system, making it more complex and too costly to run onboard.  Our
proposed alternative approach is to apply MAST to adjust these parameters incrementally.  During
each cycle, sensor parameters are adjusted and attitude and sensor residuals are computed.  Using
different combination of sensors and gyroscope, two or more attitudes are estimated.  The
predictor monitors and predicts the values of the residuals using conventional prediction
algorithms such as the dynamic predictor given in Section 3, or standard regression and
extrapolation.  When it is discovered that the residuals will exceed a given threshold sometime in
the future, implied by an inconsistency in the estimated attitudes, the tuning mode will be
activated.  In the tuning mode, the evaluator will diagnose the inconsistencies and create one or
more calibration goals, usually expressed as "which measurement parameters are needed to adjust
the ranges for the appropriate calibration algorithm".  The tuning process is then planned and
scheduled. In a spacecraft where one or more sensors need regular calibration, or where computing
resource is stringent, the predictor may be replaced by a fixed schedule or by a cron table.

The calibration process is an iterative process, where sensor parameters believed to be in error are
adapted on the basis of the system experience with a goal that the mean of all residuals converges
to zero.  The calibration procedure depends on the types of sensors available onboard. If there are
sufficient number of redundant sensors, a standard technique is to compare the attitude
determined by the measurements from a set of sensors including the sensor to be calibrated with
those determined from a different set of sensors with at least equal or higher accuracy. On the
other hand, if there are no redundant sensors of high enough accuracy, then the procedure usually
involves more in-depth analysis. In this paper, we assume there is at least one accurate sensor
such as a CCD.  Typically, CCD is chosen as the standard frame of reference and generally does
not need calibration.  In this case, we may calibrate other sensors by comparing the estimated
attitude and sensor residuals with that determined from the CCD. Any inconsistency will indicate
that there are errors in one or more model parameters.
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For current missions, the gyro scale factor calibration task has to be done manually and regularly
by attitude specialists. MAST can be applied to this problem if there is sufficient planning
capability on board. The gyro scale factor parameter is calibrated by inspecting changes in
attitude during a planned maneuvering.  Having an autonomous planner and scheduler onboard
will enable the system to piggyback gyro scale factor calibration during routine spacecraft
maneuvering.

7.  Example 2: Formation Keeping
Formation control architectures are being developed for various future missions and several
approaches are being investigated. One of the research efforts in this area at the Goddard Space
Flight Center is the formation flying for the New Millennium Program [10, 11] designed for Earth
Orbitor 1 (EO-1) spacecraft flying in formation with the Earth Observing System-AM1 (EOS-
AM1).  The formation of EO-1 and EOS-AM1 involves position maintenance of the two
spacecraft relative to measured separation errors.  This involves the use of an active control
scheme to maintain the relative positions of EO-1 (follower) with respect to EOS-AM1 (leader).
This formation structure is specifically designed for the EO-1/EOS-AM1 formation, which
involves only two spacecraft.   With care, conventional control algorithms can be used effectively
in such a small formation.   For a large formation, the complexity rises very rapidly and
eventually conventional algorithm will break down and new approach will be needed.  GSFC and
Stanford have form a partnership to develop the Autonomous Control System (AutoCon)
architecture which employs innovative use of fuzzy logic and natural language to resolve multiple
conflicting constraints and autonomously plan, execute and calibrate routine spacecraft orbit
maneuvers.  The underlying control algorithm is a robust autonomous closed-loop three-axis
system.   However, it is still not clear if AutoCon will be feasible for the control of a large
formation.  Our main objective in this application of MAST is to improve on our machine
learning approach to work with or integrate into AutoCon environment.  See also [12] for another
approach to formation control.

Currently, there are two major approaches in spacecraft formation control and maintenance: the
leader and follower architecture, and the decentralized formation architecture.  In the leader and
follower approach, one of the spacecraft, designated the center of the formation, performs all the
necessary computation to determine control requirements for itself and for the rest of its crew.
The lead spacecraft has two-way communication with each of the follower spacecraft.  In the
decentralized approach, all spacecraft in the formation are peers. They transmit necessary
attitude, position, velocity and control information among each other.  A decentralization
algorithm with minimal exchanged information has been developed by R. Carpenter [13].  His
technique is based on the Linear-Quadratic Gaussian Control algorithm [14].  Another approach
to the control of a large formation is to use synchronization algorithm introduced by Pecora and
Carroll [15,16].

At the time this paper was written, none of the approaches to formation flying known to the
authors have been fully developed and tested.  Nevertheless, we will discuss the possibility of
applying MAST algorithm to formation control and maintenance problems.  As opposed to the
attitude sensor calibration where sensor parameters are adjusted to achieve desired attitude
accuracy goal, in formation maintenance application, the control vectors are adjusted to achieve
desired position (and attitude) of each spacecraft in the formation.  In the decentralized formation
control, each spacecraft in the formation performs local closed-loop control using input from its
local sensors in addition to information transmitted from other spacecraft in the formation.  In the
monitoring mode, relative position and attitude of each spacecraft is monitored against a
formation model.  When sizable drifts are predicted, MAST tuning mode will be activated.  An



9

example of formation tuning is demonstrated in Figure 3.  In this mode, an extended Kalman
filter is used in the position estimation, while MAST tuning process is used to adjust control
parameters. The tuner will take as input past measurements of position residuals and attempt to
adjust control parameters based on the results of previous cycles.  Of course, MAST tuning
process should be done offline (to save fuel).   Not until the system has accumulated sufficient

information in terms of a cumulative probability distribution, or the solutions are nearly
converging, then MAST may be switched to a real-time tuning process.

For future investigation, extended Kalman filter in the position estimator will also be replaced by
or coupling with MAST's tuning algorithm in order to reduce the computational cost even further.

8.  Conclusion
The proposed program MAST is designed with the following philosophy in mind: the
dependency on the application domain lies entirely in the predictor component, while the tuning
component is generic and independent of application domain.  With this concept, new
applications can be developed quickly by focusing on developing a predictor with full knowledge
of the nature of the application domain enough to monitor and diagnose problems that may occur.
The tuning mode, on the other hand, will only require information on the cost function to be
optimized, and parameters to be modified.

This study is part of our program to increase the level of autonomy of onboard flight software.  A
proof of concept of ASCAL, the first phase of the program is now being developed in
MATLAB™.

Figure 3.  An example of using MAST in Formation
Maintenance Application
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